Markforged parts are primarily composed of Composite Base materials. Users may reinforce parts with one type of Continuous Fiber.

Dimensions and construction of test specimens:

1. Measured by a method similar to ASTM D790. Composite Base -only parts do not break before end of flexural test.
2. Onyx FR is UL 94 V-0 Blue Card certified down to a thickness of 3mm.
3. Surface resistance measured on multiple part surfaces using recommended print settings by an accredited third party test facility. See Onyx ESD technical data sheet for more details.

Markforged tests plaques are uniquely designed to maximize test performance. Fiber test plaques are fully filled with unidirectional fiber and printed without walls. Plastic test plaques are printed with full infill. To learn more about specific testing conditions or to request test parts for internal testing, contact a Markforged representative. All customer parts should be tested in accordance to customer’s specifications.

Part and material performance will vary by fiber layout design, part design, specific load conditions, test conditions, build conditions, and the like.

This representative data were tested, measured, or calculated using standard methods and are subject to change without notice. Markforged makes no warranties of any kind, express or implied, including, but not limited to, the warranties of merchantability, fitness for a particular use, or warranty against patent infringement; and assumes no liability in connection with the use of this information. The data listed here should not be used to establish design, quality control, or specification limits, and are not intended to substitute for your own testing to determine suitability for your particular application. Nothing in this sheet is to be construed as a license to operate under or a recommendation to infringe upon any intellectual property right.
Continuous Fiber Reinforcement (CFR) — a unique process that reinforces FFF parts with high-strength continuous fibers. A CFR capable machine uses two extrusion systems: one that extrudes Composite Base material in a standard FFF process, and a second for long strand continuous fibers that are laid down in-layer, replacing FFF infill.

Composite Base
Markforged Composite Base materials print like conventional FFF thermoplastics. They can be printed by themselves, or reinforced with any of our continuous fibers, including Carbon Fiber, Kevlar, and Fiberglass.

Continuous Fiber
Continuous Fibers are laid down on the inside of parts through a second fiber nozzle. They cannot be printed by themselves — instead, they are used to reinforce parts printed out of a composite base material like Onyx.

![Graph showing flexural stress vs. flexural strain for different materials](image)

- **Onyx**
 Flexural Strength: 71 MPa
 Onyx is a micro carbon fiber filled nylon. It’s 1.4 times stronger and stiffer than ABS and can be reinforced with any continuous fiber. Onyx sets the bar for surface finish, chemical resistivity, and heat tolerance.

- **Onyx FR**
 Flexural Strength: 71 MPa
 Onyx FR is a Blue Card certified UL94 V-0 material that possesses similar mechanical properties to Onyx. It’s best for applications in which flame retardancy, light weight, and strength are required.

- **Onyx ESD**
 Flexural Strength: 83 MPa
 Onyx ESD is a static dissipative safe variant of Onyx — meeting stringent ESD safety requirements while offering excellent strength, stiffness, and surface finish. It’s best used in applications that require ESD safe materials.

- **Nylon**
 Flexural Strength: 50 MPa
 Nylon White parts are smooth, non-abrasive, and easily painted. They can be reinforced with any continuous fiber and work best for non-marring work holding, repeated handling, and cosmetic parts.

- **Carbon Fiber**
 Flexural Strength: 540 MPa
 Carbon Fiber has the highest strength-to-weight ratio of our reinforcing fibers. Six times stronger and eighteen times stiffer than Onyx, Carbon Fiber reinforcement is commonly used for parts that replace machined aluminum.

- **Fiberglass**
 Flexural Strength: 200 MPa
 Fiberglass is our entry level continuous fiber, providing high strength at an accessible price. 2.5 times stronger and eight times stiffer than Onyx, Fiberglass reinforcement results in strong, robust tools.

- **Kevlar®**
 Flexural Strength: 240 MPa
 Kevlar® possesses excellent durability, making it optimal for parts that experience repeated and sudden loading. As stiff as fiberglass and much more ductile, it can be used for a wide variety of applications.

- **HSHT Fiberglass**
 Flexural Strength: 420 MPa
 High Strength High Temperature (HSHT) Fiberglass exhibits aluminum strength and high heat tolerance. Five times as strong and seven times as stiff as Onyx, it’s best used for parts loaded in high operating temperatures.